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Abstract. The aim of this paper is to establish fixed point results for the collection of sequence of 

mappings by using the concept of weakly compatibility and continuity in complex valued metric 

space. Our results generalize the results proved earlier by [4]. 

1. Introduction 

In 2011, Azam et al. [1] introduce the notion of of new space called complex valued metric 
space and establishes existence of fixed point theorems under the contraction condition. 

Theorem 1.1. ([1]). Let (X,d) be a complete complex valued metric space and S,T : X → X, If S and T 

satisfy 

  (1.1) 

for all x,y ∈ X, where λ,µ are nonnegative reals with λ + µ < 1. Then S and T have a common fixed point. 

In 2012, Rouzkard and Imdad [8] established some common fixed point theorems satisfying 
certain rational expressions in Complex valued metric space. 

Theorem 1.2. ([8]). If S and T are self mappings defined on a complex valued metric space (X,d) 

satisfying the condition 

  (1.2) 

for all x,y ∈ X, where λ,µ,γ are nonnegative reals with λ + µ + γ < 1. Then S and T have a unique common 

fixed point. 

Later on Sintunavarat W. and Kumam P. [9] extend and improve the condition of 
contraction of theorem (1.1) from the constant of contraction to some control functions and 
establish the common fixed point theorems which are more general than the result of [1] and 
also give the results for weakly compatible mappings in complex valued metric spaces. 
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Theorem 1.3. ([1]). Let (X,d) be a complete complex valued metric space and 

S,T : X → X, if there exists a mappings Λ,Ξ : X → [0,1) 

(1) Λ(Sx) ≤ Λ(x) and Ξ(Sx) ≤ Ξ(x); 

(2) Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x); 
(3) (Λ + Ξ)(x) < 1; 

  (1.3) 

for all x,y ∈ X, where λ,µ are nonnegative reals with λ + µ < 1. Then S and T have a common fixed point. 

In 2014 Hakwadiya et.al. [4], Proved common fixed point theorems for six self mappings as 
follows 

Theorem 1.4. Let (X,d) be a complex valued metric space and A,B,D,M,S and T be six self mappings in 

X satisfying the condition: 

(1) S(X) ⊂ BD(X) and T(X) ⊂ AM(X); 

(2) (AM,S) and (BD,T) are commuting pairs; 

(3) The pair (AM,S) and (BD,T) are weakly compatible; 

(4) For each x,y ∈ X and x 6= y,; 

(i): If d(Ty,AMx)+d(Sx,BDy)+d(BDy,AMx) = 0. then d(Sx,Ty) = 

0; 

(ii): If d(Ty,AMx) + d(Sx,BDy) + d(BDy,AMx) 6= 0 than following 

 

Where α+β +2γ +η < 1. Then AM,BD,S and T have a unique common fixed point. 

2. preliminaries 

We recall some basic concept, notion and definition in complex valued metric spaces. 

Let C be the set of complex numbers and z1,z2 ∈ C. We define a partial order  as follows: 

(A): Two complex number z1,z2 such that and Im(z1) ≤ Im(z2). 

Thus  if one of the following holds: 

(C1): Re(z1) = Re(z2) and Im(z1) = Im(z2); 

(C2): Re(z1) < Re(z2) and Im(z1) = Im(z2); 
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(C3): Re(z1) = Re(z2) and Im(z1) < Im(z2); (C4): Re(z1) < Re(z2) and 

Im(z1) < Im(z2). 

In particular, we will write  and one of (C2), (C3), and (C4) is satisfied and we 
will write z1 ≺ z2 if only (C4) is satisfied. 

(B): It follows that, 

; 

 and z2 ≺ z3 imply z1 ≺ z3;  implies |z1| ≤ |z2|; 

(4) if a,b ∈ R, 0 ≤ a ≤ b and , then  for all z1,z2 ∈ C. 

Definition 2.1. [1]. Let X be a nonempty set. A mapping d : X × X → C is called a complex valued 

metric on X if the following conditions satisfied : 

(1) 0 ≤ d(x,y),for all x,y ∈ X and d(x,y) = 0 if and only ifx = y; 

(2) d(x,y) = d(y,x) for all x,y ∈ X; (3) d(x,y) ≤ d(x,z) + (z,y), for all x,y,z ∈ X. 

Then d is called a complex valued metric on X and (X,d) is called a complex valued metric space. 

Example 2.2. Let X = C, Define the mapping d : X × X → C by 

d(z1,z2) = e−il|z1 − z2|, 

where z1,z2 ∈ C. and l ∈ R Then (X,d) is a complex valued metric space. 

Definition 2.3. [9] Let (X,d) be a complete complex valued metric space, {xn} be a sequence in X, 

(1) A point x ∈ X is called interior point of a set A ⊆ X whenever there exists 0 < r ∈ C such that 

B(x,r) := {γ ∈ X|d(x,y) < r} ⊆ A. 

(2) A point x ∈ X is called a limit point of Z whenever for every 0 < r ∈ C,{B(x,r) ∩ (A − X)} 6= φ 

(3) A subset A ⊆ X is called open whenever each element of A is an interior point of A 

(4) A subset A ⊆ X is called closed whenever each limit point of A belongs to A. 

(5) A sub − basis for a Hausdorff topology τ on X is a family 

Definition 2.4. [9]. Let (X,d) be a complex valued metric space, {xn} be a sequence in X and x ∈ X. 

 

 

(1) If for every c C , with 0 < c there is N ∈ N such that for all n > N. d(xm,x) < c, then {xn} is said to 

convergent, {xn} converges to x and x is the limit point of {xn}. we denote this by limn→∞xn = x. 

(2) If for every c ∈ C, with 0 < c there is N ∈ N such that for all n > N, d(xn,xn+m) < c, where m ∈ N, 

then {xn} is said to be Cauchy sequence. 

(3) If every Cauchy sequence in X is convergent, then (X,d) is said to be a complete valued metric 
space. 

Remark 2.5. (1) If A0 is the set of limit points of ‘A‘ and there exist ’u’ such that 0 < u < z for each z ∈ 
A0 then u = 0, 

(2) If z ≤ λz and 0 ≤ λ < 1, then z = 0. 

Lemma 2.6. [1] Let (X,d) be a complex valued metric space and {xn} be a sequence in X. Then {xn} 

converges to x if and only if |d(xn),x| → 0 as n → ∞. 

Lemma 2.7. [1] Let (X,d) be a complex valued metric space and let {xn} be a sequence in X. Then {xn} 

is a cauchy sequence if and only if |d(xn,xn+m)| → 0 as n → ∞, where m,n ∈ N 
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Definition 2.8. [1] Let s and T be self mappings of a nonempty set X 

(1) A point x ∈ X is said to be a fixed point of T if Tx = x. 

(2) A point x ∈ X is said to be a coincidence point of S an T if Sx = Tx and we shall called w = Sx = 
Tx that a point of coincidence of S and T. 

(3) A point x ∈ X is said to be a common fixed point of S and T if x = Sx = Tx. 

In 1976, Jungck [5] introduced concept of common mappings as follows: 

Definition 2.9. Let X be a non-empty set. The mappings S and T are commuting if TSx = STx, for allx 
∈ X. 

In 1986, [5] introduced the more generalized commuting mappings in metric spaces, called 
compatible mappings., which also are more general than the concept of weakly commuting 
mappings as follows: 

Definition 2.10. Let S and T be mappings from a metric space (X,d) into itself. 

The mappings S and T are said to be compatible if 

limn→∞d(STxn,TSxn) = 0 

whenever {xn} is a sequence in X such that limn→∞Sxn = limn→∞Txn = z for some z ∈ X. 

Remark 2.11. In general, commuting mappings are weakly commuting and weakly commuting 
mappings are compatible, but the converse are not necessarily true and some examples can be 
found in [5]. 

Example 2.12. Let X = [0,2] with usual metric d where d(x,y) = |x − y| for all x and y in X. We define 

T(x) and S(x) as follows if x ∈ [0,1) 

= 

 2, if x ∈ [1,2] 

 if x [0,1) 

= 

 2, if x ∈ [1,2] 

by choosing  then  and  

one can easily show the commuting mappings are weakly commuting and weakly commuting 
mappings are compatible, but the converse are not necessarily true. 

In 1996, Jungck introduced the concept of weakly compatible mappings as follows: 

Definition 2.13. Let S and T be self mappings of a non empty set X. The mappings S and T are weakly 
compatible if STx = TSx whenever Sx = Tx. 

We can see an example to show that there exist weakly compatible mappings which are not 
compatible mappings in Djoudi and Nisse. 

The following lemma proved by Haghi et al. is useful for our main results: 

Example 2.14. Let X = [2,20] with usual metric d where d(x,y) = |x − y| for all x and y in X.We define 
T(x) and S(x) as follows 

if x = [0,1) if 2 ≥ x ≤ 5 

  x − 3, if x > 5 

 

by choosing  for all n ≥ 1. The map S and T are compatible maps. 
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Lemma 2.15. Let X be a nonempty set and T : X → X be a function. Then there exists a subset E ⊆ X 

such that T(E) = T(X) and T : E → X is one to one. 

Definition 2.16. Let fn : X → X, where n = 1,2,3... be a sequence of mapping in topological space X. A 

point x ∈ X is said to be a fixed point of the sequence  converges to x as n → ∞. 

If fn = f for every n, for some fixed f, then a point is a fixed point of the sequence , when 
and only when it is a fixed point of the mapping f. Also if fn converges to f point wise, then a point is 

a fixed point of the sequence , when and only when it is a fixed point of the mapping f. 

3. Main results 

Theorem 3.1. Let (X,d) be a complex valued metric space and S,T be the self mappings and Pn and Rn 

be the collection of self mappings in X, such that for all x,y ∈ X. 

(1) S(X) ⊂ Rn(X) and T(X) ⊂ Pn(X); 

(2) (Pn,S) and (Rn,T) are commuting pairs; 

(3) The pair (Pn,S) and (Rn,T) are compatible; 

(4) For each x,y X and x 6= y,; 

(i): If d(Ty,Pnx)+d(Sx,Rny)+d(Rny,Pnx) = 0. then d(Sx,Ty) = 0; 

(ii): If d(Ty,Pnx)+d(Sx,Rny)+d(Rny,Pnx) 6= 0 than following identity holds; 

 

Where α + β + 2γ + η + θ < 1. Then Pn,Rn,S and T have a unique common fixed point. 

Proof. Let x0 ∈ X be arbitrary, Since S(X) ⊂ Rn(X) and T(X) ⊂ Pn(X) define for each n ≥ 0 the sequence 

{yn} in X by y2n+1 = Sx2n = Rnx2n+1 and y2n+2 = Tx2n+1 = Pnx2n+2 where n = 0,1,2... then, 
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Similarly, 

 

i.e. 

So, 1 then 

it can be concluded that 

 

now for all m > n, we have, 

 

Hence, 

 

i.e. 

limn→∞|d(ym,yn)| = 0. 

Hence {yn} is a cauchy sequence. Since X is complete so sequence {yn} is converges to some point 
z those sub sequence {Sx2n},{Rnx2n+1},{Tx2n+1} and 

{Pnx2n+2} also converges to z. That is limn→∞yn = limn→∞Sx2n = limn→∞Rnx2n+1 

= limn→∞Tx2n+1 = limn→∞Pnx2n+2 = z, there exist some u ∈ X such that yn → u as n → ∞,Su = Pnu = Rnu = 
Tu = z and also the pair (Pn,S) and 

(Rn,T) are weakly compatible, then they commute at their coincidence point. 

Hence Sz = S(Pnu) = (PnSu) = (Pnz) and Rnz = RnTu = T(Rnu) = Tz. 

Case I: 

Now we shall show that Tz = Sz, put x = z and y = x2n+1 in equation 3.1. We have, 
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If let n → ∞, we get 

 

 

which is the contradiction that (β+2γ+θ) < 1 therefore Sz = z, since Sz = z,then 

Pnz = Sz =⇒ Pnz = z. 

Now we will prove that Tz = z, putting x=y=z in equation 3.1. We have, 
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Then 

=⇒ |d(z,Tz)| ≤ (β + 2γ + θ)|d(z,Tz)| 

which is again a contradiction. Therefore Tz = z and this implies Rnz = Tz =⇒ 

Rnz = z, now we will prove that Pz = z. Putting x = pz and y = z in equation 

3.1, we get, 

 

 

Now, 

 |d(pz,z)| ≤ (β + 2γ + θ)|d(pz,z)| 

Which is a contradiction, since (β + 2γ + θ) < 1, therefore pz = z :Pnz = z =⇒ 

Pn−1z = z. Now we will prove that Rz = z in equation 3.1 we may put x = z and y = Rz 
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now, 

 |d(z,Rz)| ≤ (β + 2γ + θ)|d(z,Rz)| 

but, (β + 2γ + θ) < 1 which is a contradiction, therefore Rz = z. 

Uniqueness: 

Let u be another fixed point of S,T,Rn and Pn then we have 

 

 

which is again a contradiction since (β + 2γ + θ) < 1 than z = u is a unique common fixed point of 
S,T,Rn and Pn. Case II: 

We consider the case d(Tx2n+1,Pnx2n)+d(Sx2n,Rnx2n+1)+d(Rnx2n+1,Pnx2n) = 0 for any ‘n0. =⇒ 

d(Sx2n,Tx2n+1) = 0. So that y2n = Sx2n = y2n+1 = Rnx2n+1 = 

Tx2n+1 = Pnx2n+2 = y2n+2 thus we have y2n+1 = Sx2n = Pnx2n = y2n then there exist n1 and m1 such that n1 = 
Sm1 = Pnm1 = m1. 

Similarly y2n+2 = Tx2n+1 = Rnx2n+1 = y2n+1 then there exist n2 and m2 such that n2 = Tm2 = Rnm2 = m2. 

As  that d(Sm1,Tm2) = 

0, so that n1 = Sm1 = Pnm1 = Tm2 = Rnm2 = n2. which in turn yields that n1 = Sn1 = Pnm1 = Pnn1. 

Similarly one can also have n2 = Tn2 = Rnn2. As n1 = n2, implies n1 = ST1 = Tn1 = Rnn1, therefore n1 = 

Sn1 = Pn1 = Rn1 = Tn1 for all Pn and Rn. Hence n1 = n2 is common fixed point. 
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Uniqueness: 

If v is an another fixed point of S,T,Rn and Pn then we have v = Sv = Pv = Rv = Tv for even pn and Rn 

therefore d(Tv1,Pnn1) + d(Sn1,Rnv1) + d(Rnv,Pnn1)) = 0 so that d(n1,v1) = 0. 

Hence d(Sn1,Tv) = 0 =⇒ n1 = v1. Hence n1 is unique fixed point of S,T,Rn and Pn.  

Corollary 3.2. Let (X,d) be a complex valued metric space and S,T,R and P be four mappings in X 

satisfies the condition 

(1) S(X) ⊂ R(X) and T(X) ⊂ P(X); 

(2) The Pair (P,S) and (R,T) are weakly compatible; 

(3) For each x,y ∈ X and x 6= y,; 

(i): If d(Ty,Px) + d(Sx,Ry) + d(Ry,Px) = 0. then d(Sx,Ty) = 0; 

(ii): If d(Ty,Px) + d(Sx,Ry) + d(Ry,Px) 6= 0 than following identity holds; 

 
Where α + β + 2γ + η + θ < 1. Then P,R,S and T have a unique common fixed point. 

Theorem 3.3. Let (X,d) be a complex valued metric space and S,T be the self mappings and Pn and 

Rn be the collection of self mappings in X, such that for all x,y ∈ X. 

(1) S(X) ⊂ Rn(X) and T(X) ⊂ Pn(X); 

(2) (Pn,S) are compatible, Pn or S is continuous and (Rn,T) are weakly compatible; 

(3) (Rn,T) are compatible, Rn or T is continuous and (Pn,S) are weakly compatible; 

(4) For each x,y ∈ X and x 6= y,; 

 

holds where α, β, γ, η and θ are non-negative real number with α+β+2γ+η+θ < 1. Then Pn,Rn,S and T 

have a unique common fixed point. 
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Proof. By Theorem [3.1] {yn} is a Cauchy sequence. Since X is complete, that means {yn} must 
converge to some point z (say).Thus subsequence {Sx2n}, 

{Rnx2n+1},{Tx2n+1}, and {Pnx2n+2}, also converges to z. that is 

 limn→∞yn = limn→∞Sx2n = limn→∞Rnx2n+1 = limn→∞Pnx2n+2  

= limn→∞Tx2n+1 = z 

Assume that S is Continuous,since (Pn,S) are compatible, we have 

(3.5) 

limn→∞Pn(Sx2n+2) = limn→∞S(Pnx2n+2) = Sz (3.6) 

Now putting x = x2n+2, y = x2n+1 then we have 

,d 

Let n → ∞, in the above inequality and using 3.5 and 3.6, we get 

 

Now putting x = z, and y = x2n+1 then we have in equation 3.8 

 

Let n → ∞, in the above inequality and using 3.5 and 3.6, we get 
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i.e. 

 

Then, |d(Pnz,z)| ≥ 0, hence Pnz = z. Since S(x) ⊂ Rnx, there exist a point w ∈ X such that Sz = Rnw. 
Suppose that Rnw 6= Tw. Now to prove that Rnw = Tw and given that Sz = z = Rnw. From 3.8 putting 
x = z and y = w, 

we obtain 

 

 

 
Therefore Tw = z hence Rnw = z = Tw. Thus Rnw = Tw. since Rnw and T are weakly compatible then 
Rnz = Rn(Tw) = Tz. Thus z is a coincidence point of 

Rn and T, now to prove Tz = z, putting x = z and y = z in 3.8 

 

 
=⇒ |d(z,Tz)| ≤ (2γ + θ)|d(z,Tz)| =⇒ Tz = z 
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Uniqueness Let u be an another common fixed point of Pn,Rn,S and T, then we have from 3.8 

 

 

 

i.e. 

 |d(z,u)| ≤ (β + 2γ + θ)|d(z,u)| 

Which is a contradiction since (β+2γ+θ) < 1. therefore d(z,u) = 0 =⇒ z = u. 

Hence z is a common fixed point of Pn,Rn,S and T.  

Corollary 3.4. Let (X,d) be a complex valued metric space and R,P,S and T be reciprocally continuous 

self mappings in X, such that for all x,y ∈ X. 

(1) S(X) ⊂ R(X) and T(X) ⊂ P(X); 

(2) (P,S) are compatible, P or S is continuous and (R,T) are weakly compatible; 

(3) (R,T) are compatible, R or T is continuous and (P,S) are weakly compatible; 

(4) For each x,y ∈ X and x 6= y,; 

 

holds where α, β, γ, η and θ are non-negative real number with α+β+2γ+η+θ < 1. Then P,R,S and T have 

a unique common fixed point. 
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